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Abstract 

The paper presents a quaternion-based extended Kalman filter for postural instability evaluation during stance. It uses 
low-cost MEMS inertial sensors attached on the lower back of the person at a known height in order to instrumenting the 
static balancing test. Generally, patients with Parkinson’s disease or vestibular-loss are at greater risk for having this 
problem. The objective of this study was to assess the feasibility of using Kalman filter to characterize the postural 
steadiness. The Kalman filter is used here as a data fusion algorithm to estimate the orientation of the body based on 
acceleration and angular rate signals. In order to get the coordinate of the body’s centre of mass (CoM), the height of the 
sensor is projected on the horizontal plane by using the estimated orientation. Many parameters such as the mean velocity 
of sway, lateral/anterior-posterior range and others are then obtained from the sway path, which help the clinicians to 
assess the postural instability. The method was tested on 9 healthy individuals (21-31 years). Three different test 
conditions, namely feet comfortable stance with eyes-open, feet together stance with closed eyes and one-leg stance with 
eyes-open were evaluated here. The proposed algorithm showed successful estimation of the time-domain parameter for 
the postural sway analysis. 
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1. Introduction 

Postural instability is one of the common symptoms which appear in patients with neurological disorders 
such as Parkinson’s disease and vestibular-loss. The patient is unable to maintain the fixed upright position 
during stance which is caused by involuntary body movements (backwards and forwards with lateral sway). 
Therefore a system to measure this instability is advantageous for clinical assessment, especially for 
rehabilitation intervention. In general, balance problems increase with age [1] and also by altered sensory, 
motor or central nervous function caused by Parkinson’s disease or peripheral neuropathy. 

Many researchers used tri-axial accelerometer-based system, attached on the center of mass, to extract the 
quantitative parameters for balance [2-6]. The work in [2-3] showed a method based on acceleration 
measurements, in which it computes the coordinates of the traced path. The approach was compared with 
force platform measurements and it showed that the two systems follow the same behavior between test 
conditions. On the other hand, the work in [4-6] computed the balance metrics directly from the acceleration 
trajectories in the horizontal plane. The studies were applied on the group of patients with PD. The results 
showed the extracted parameters from acceleration measurements which are able to distinguish between the 
groups.  

Mellone et al. [6] presents a Hilbert-Huang-Based filter to remove tremor signal before the calculation of 
balance parameters takes place. For patients with PD one should consider the effect of tremor on the 
calculation of balance parameters, therefore a tremor removal filter is advantageous in this case. The 
frequency bandwidth of the stabilization process in quiet standing is mainly below 3 Hz while the tremor is 
located typically between 4 and 7 Hz. 

Other researchers like [7] use the Gyroscope measurements, instead of accelerometer measurements, to 
distinguish between normal and deficient balance control. Originally, force platforms were used mainly in 
clinics for many studies to characterize the postural steadiness [8-10]. Alongside, a variety of postural 
measures (e.g. mean velocity, mean distance and sway area) was used to help understanding age- and disease 
associated sway. 

Currently, the sensor fusion algorithms like Kalman filtering are still not investigated in detail for the 
calculation of balance parameters based on gyroscope and accelerometer measurements. Here, a Kalman filter 
is presented to estimate the orientation of the body. The approach uses the estimated inclination (pitch and roll 
angle) to project the height of the sensor unit which is known beforehand, on the horizontal plane by using the 
trigonometric function. Hence the coordinate of the body’s CoM is computed continuously to form the 
trajectory of sway. In the study, the algorithm was tested on healthy individuals for different test conditions.  

The rest of the paper is structured as follows: Section 2 provides information about the test subjects with 
the measurement unit. The section describes the measured balance parameters and the Kalman filtering with 
the proposed method to calculate the sway trajectory. Section 3 shows the experimental results with the 
discussion. Finally, the conclusions and future work are presented in section 4. 

2. Materials and methods 

2.1. Subjects and procedure 

Nine healthy persons (age range: 21-31 with average 25.6, gender: 9 male) without specific diseases of the 
nervous, vestibular, or muscular systems or balance disorders were asked to perform the static balance test. 
The participants were asked to perform the test for three trails in short succession, in which they took a rest on 
a chair before performing the next trail. For each trail, three condition tests were done: standing with feet in 
comfortable position and open eyes (EO-CP), standing with feet together and closed eyes (EC-TP) and one-
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leg standing with eyes open (EO-OL). In all test conditions and trails, the test was performed on normal 
surface. During the test, the person was standing in upright position.  

For the test, the inertial unit was placed on the lower back of the person at the approximate height of the 
body’s CoM by using a double sided adhesive tape and an elastic band to ensure fixed attachment (Fig. 1). 
The duration of each trail took 1 minute in which only 40 seconds used for evaluation to let the filter converge 
in the initial time.  

 

 

Fig. 1. Posterior view of the placement of the inertial measurement unit (IMU), the unit was placed on the lower back by using a double 
sided adhesive tape with a band. The figure shows as well the inertial unit fixed on the band 

2.2. The sensor unit 

The participants wore an IMU on their lower back in the area between the L3 and L5 vertebrae. The unit 
includes a 3-axis accelerometer (range: ±4g, resolution: ±0.004 g/digit) and a 3-axis Gyroscope (range: ±500 
deg/s, resolution: ±0.07 deg/s/digit). In the study, the acceleration and angular rate were measured 
synchronously at a sampling rate of 400 Hz and the measurement have been sent to a host PC via  a USB 
interface to log the inertial data (Fig. 2). The data were filtered at a cut-off frequency of 4 Hz by a low-pass 
4th order FIR filter with zero-phases. The filter is used to remove the noise and tremor signals. 
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Fig. 2. The IMU which was used for the test 

2.3. Balance quantitative parameters 

Eight postural parameters have been proposed in this study to describe the planar (2D) of CoM [8-9]. For 
the equations listed below, let N  be the number of sampling point and T represents the time for the test 
execution. In the dataset, each point is represented by ( )ii yx , . For each measured parameter, the 
corresponding axes namely: Anterior-Posterior (A/P) and Medial/Lateral (M/L) can be similarly calculated. 
First the mean of each signal is removed from the time series of each CoM then the following parameters 
were measured:  

 Sway Area (SA): 
It is the area enclosed by the CoM path per unit of time. It is approximated by accumulating the triangles 

area, which is formed by two consecutive points on the sway trajectory and the mean CoM, divided by the 
total time. 

 Mean Distance (MD): 
It is the mean distance between the points of the sway trajectory and the mean of CoM. It is approximated 

by summing the distance of each pair of points to the mean CoM and then divided by the number of samples. 
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 Mean Velocity (MV): 

It is the division of the total length of the sway path (SP) by the travelled time. The total length is 
calculated by summing the distance between each consecutive pair of points. 
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 Mean Frequency (MF): 
It is the number of revolutions per one second which is taken in a uniform circular motion with a radius of 

MD and a total length of sway trajectory of ST. 
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 Range (R): 
It is the absolute difference between the highest and lowest value in the data set. 
 

 Root-Mean-Square Distance (RMS-D): 
It is the square root of the mean of the squares of the data. The parameter represents the standard 

distribution of the data. 
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2.4. Error-state Kalman filter 

The Kalman filter is a recursive data fusion algorithm which estimates the state of a dynamic system from 
noisy measurements. The state-space equations in the indirect (error-state) Kalman filter are formed by 
expressing the change of errors with respect to time. The filter estimates the difference between the true x and 
the estimated x̂ state: 

 

xxx δ+=ˆ    (6) 

For the continuous linear system, the state-space model is expressed as follows [11]: 
 

( ) ( )wtGxtx vv&v +Φ= δδ    (7) 

whereΦ represents the state transition matrix, G is the mapping matrix into state vector and wv is a zero-mean 
white Gaussian noise. On the other hand, the measurement equation is given in discrete time by: 
 

kkk vxHz vvv += δδ    (8) 

where zvδ is the difference between the predicted and real measurement. H matrix represents the Jacobian of 
the measurement function. The random variables represent the process and measurement noises respectively. 
They are white noise with normal probability distribution ( )Qw ,0~ℵv and ( )Rv ,0~ℵv . 

2.5. Filter design 

Here an error-state Extended Kalman filter is used for the orientation estimation. The filter tracks the 
orientation using quaternion to avoid the problem associated with Euler angle singularity [13] and also for its 
efficiency in computation [14].  Here, the unit quaternion is used to describe a rotation of angle θ  about unit 
axis μv as follow:  

 

[ ] ( ) ( )[ ]ΤΤ == μθθ v2sin2cosqqq w    (9) 

where wq represents the scalar part of the quaternion and q is the corresponding vector part. The attitude 
dynamic of the rigid body is expressed in term of unit quaternion by 
 

( )qq ωΩ=&    (10) 

where ( )ωΩ is the skew-matrix on the angular rate. The error state vector [ ]ωbδqδ
v

 is composed of the 
vector part of the error quaternion and the three-axial Gyroscope biases error vector. The three element vector 
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part of quaternion error vector is used instead of the four-element error vector to avoid covariance matrix 
singularity [12]. The continuous time state transition vector equation is written in the form: 
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where ⎣ ⎦×ω~  is the skew-symmetric matrix of the measured angular velocity which is used as an operator for 
the cross-product, ( )ωω Qw ,0~ℵv is the zero-mean white noise of the control input and ( )

ωω bb Qw ,0~ℵv is the 
process zero-mean white noise of the gyroscope bias. The gyroscope bias is modeled as a random walk. 
 

 

Fig. 3. Schematic diagram of the error state orientation filter 

The discrete version of the process model (11) is used for the EKF formulation. The measurement model 
relates the measurement error to the state vector and is given in discrete form as: 

 

⎣ ⎦ 1111 ˆ2 ++++ +×−== kkkk vqaaz vvv δδδ    (12) 

where ⎣ ⎦×+1ˆka is the skew-symmetric matrix of the predicted measurement for acceleration â and 
( )ak Qv ,0~1 ℵ+

v  is the measurement zero-mean white noise of the acceleration. The predicted acceleration 
measurement can be calculated by 
 

( )gqCa k
b
nk

v−
++ = 11 ˆˆ    (13) 

with [ ]Τ≈ 81.900gv m/s2 and ( )−
+1ˆk

b
n qC  represents the rotation matrix that transforms a vector from 

navigation  to body frame. From the estimated orientation, the coordinate of the body’s center of mass (CoM) 
can be obtained by projecting the height of the sensor h

v
on the horizontal plane (Fig. 4). The projection is 

done with help of quaternion: 
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where 1+ksv is the projected height on the horizontal plane and the two consecutive points namely ( )ii yx ,  
and ( )11, ++ ii yx form a segment from the sway path. 

 

 

Fig. 4. The tracing of the body’s CoM by projecting the sensor’s height h
v

on the horizontal plane. The point ( )ii yx , represents the 
projection in iteration i while ( )11, ++ ii yx is the next projection 

3. Results and discussion 

All data processing and statistical evaluations were performed with MATLAB (version 7.10). For each test 
condition, three trails were conducted by each individual. Therefore a set of 81 measurements in total was 
used to evaluate the algorithm.  

Figure 5 shows an example of the sway trajectory which is calculated by using the proposed method. The 
results belong to the same individual from the test group and for three test conditions.  It can be seen in the 
figure that the sway areas are well identified for all test conditions, additionally it can be observed that the 
sway area increases proportionally with increasing the difficulty to maintain the postural balance. In the 
example, the EO-CP condition has the smallest area (area = 53.04 mm2) while the EC-TP test allocates larger 
area (area = 321.18 mm2) than the EO-CP but lesser than the EO-OL condition (area = 613.12 mm2). The total 
area was estimated by using the convex hull method. 

On the other hand, Table 1 shows the measured parameters, listed in section 2.3, represented in their means 
and standard deviations. The parameters were measured from the displacement time series, i.e. the Euclidean 
distance between each sample point and the centered CoM, and also from A/P and M/L time series. In the 
study the measurement from a force platform was not present due to their unavailability, therefore the three 
test conditions, namely EO-CP, EC-TP and EO-OL were selected to reflect the tendency of increasing in the 
difficulty to perform a stable stance. The EO-CP condition is considered as the easiest case, while EO-TP is 
expected to be in the middle state as the sway increases when eyes are closed. EO-OL condition, when one 
leg standing is performed should show highest sway. The former statement is confirmed as well by the results 
in Table 1 which show an increased tendency in the measured parameters (mean distance, rms distance, sway 
area, mean velocity, range and total power).  

For all the test conditions, the mean frequency parameter did not show comparable results between the 
conditions. The reason for this is that the data were drawn from healthy individuals therefore the number of 
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uniform circular motion produced per one second is kept relatively in the same value when these test 
conditions were performed on healthy individuals.  

Here the Wilcoxon rank sum test was used to compare the difference between the groups [15]. The 
Wilcoxon rank sum test is a nonparametric statistical test which is used to test the null hypothesis of two 
independent samples drawn from the same population. The test determines if the means of their population 
are significantly different. Table 2 shows the p-values which compares all test conditions. All parameters in 
the table show statistically clear significant differences between the three conditions (p < 0.05).  

 

 

Fig. 5. Example of sway trajectory of the three test conditions which belongs to one of the participant in the test. The outline of the sway 
area is determined by the convex hull.  The estimated area by convex hull is 53.04 mm2 for EO-CP, 321.18 mm2 for EC-TP and 613.12 
mm2 for EO-OL. Left figure: sway path for the postural test of comfortable position with open eyes (EO-CP), middle figure: standing 
with feet together with closed eyes (EC-TP), right figure: one-leg standing with opened eyes (EO-OL) 

Table 1. Mean values and standard deviation of the quantitative parameters for the three test conditions 

 EO-CP EC-TP EO-OL 
 mean std mean std mean std 

Mean distance (mm) 2.86 0.62 5.13 0.88 6.46 1.26 
Mean distance A/P (mm) 2.42 0.62 3.61 0.62 4.33 0.95 
Mean distance M/L (mm) 1.07 0.17 2.93 0.74 3.89 0.79 
       
RMS distance (mm) 3.35 0.77 5.92 1.04 7.47 1.48 
RMS distance A/P (mm) 3.04 0.77 4.55 0.83 5.52 1.22 
RMS distance M/L (mm) 1.38 0.25 3.74 0.90 4.99 1.03 
       
Sway area (mm2/s) 22.83 7.32 54.95 19.04 156.45 65.42 
Total sway area (mm2) 128.34 59.69 432.85 160.79 881.21 382.92 
       
Mean Velocity (mm/s) 25.16 3.53 32.93 5.57 6910 14.90 
Mean Velocity A/P (mm/s) 16.65 1.89 21.12 4.88 38.39 9.50 
Mean Velocity M/L (mm/s) 15.30 3.01 20.72 2.94 49.20 11.39 
       
Range (mm) 18.37 5.20 30.02 6.39 39.76 9.56 
Range A/P (mm) 18.20 5.20 28.19 7.19 34.30 7.94 
Range M/L (mm) 10.03 2.96 22.35 4.36 34.57 9.79 
       
Mean frequency (Hz) 1.44 0.24 1.03 0.14 1.71 0.25 
Mean frequency A/P (Hz) 1.14 0.23 0.94 0.13 1.43 0.27 
Mean frequency M/L (Hz) 2.27 0.17 1.14 0.17 2.02 0.26 
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Table 2. The p- values of rank sum test between the three conditions. (* < 0.0001) 

 Rank sum p-values 
 EO-CP vs. EC-TP EO-CP vs. EO-OL EC-TP vs. EO-OL 
Mean distance 0.0000*   0.0000* 0.0002 
Mean distance A/P 0.0000*   0.0000* 0.0033 
Mean distance M/L 0.0000*   0.0000* 0.0001 
RMS distance 0.0000*   0.0000* 0.0002 
RMS distance A/P 0.0000*   0.0000* 0.0034 
RMS distance M/L 0.0000*   0.0000* 0.0001 
Sway area 0.0000*   0.0000* 0.0000* 
Total sway area 0.0000*   0.0000* 0.0000* 
Mean velocity 0.0000*   0.0000* 0.0000* 
Mean velocity A/P 0.0000*   0.0000* 0.0000* 
Mean velocity M/L 0.0000*   0.0000* 0.0000* 
Range 0.0000*   0.0000* 0.0001 
Range A/P 0.0000*   0.0000* 0.0077 
Range M/L 0.0000*   0.0000* 0.0000* 
Mean frequency 0.0000* 0.0007 0.0000* 
Mean frequency A/P 0.0009 0.0002 0.0000* 
Mean frequency M/L 0.0000* 0.0005 0.0000* 

 
A Similar approach to calculate the sway path is to use the accelerometer measurements alone [2-3]. 

However it is known that using a Kalman filter has advantages compared to this method [16]. The estimation 
of inclination based on acceleration measurements is obtained basically by measuring gravitational vector; 
therefore the estimation can be easily perturbed by measuring other acceleration components like centrifugal 
or Euler accelerations. Another advantage of a Kalman filter is the fusion of sensor data, for example here the 
fuse of gyroscope measurements which tracks high dynamic motion and therefore can support the better 
estimation of inclination. On the other hand, a clear disadvantage of the Kalman filter is the demand for more 
time complexity.  

The initial results presented above in this study based on healthy group and their significant difference 
between the conditions confirms the principle relevance for clinical use of this algorithm. The conclusions 
need certainly further evaluation with data from patients.   

4. Conclusions 

We have proposed an orientation Kalman filter for the clinical standing balance assessment. The method 
uses both gyroscope and accelerometer measurements on the lower back. The filter combines accelerometer 
and gyroscope measurements to obtain a robust inclination against sensor disturbance and linear acceleration 
when it is compared with the individual sensor. The fusion corrects the drift of the gyroscope and attenuates 
the influence of acceleration such as centrifugal or Euler acceleration. Moreover, the proposed method is 
independent of the sensor unit attachment on the body.  

The low-cost of the system and its usability at the home-environment with relatively small size reveals the 
importance of such a system design for clinical assessment. In future work, it is planned to validate the 
algorithm with a force platform and the system will be as well tested with data from patients of Parkinson’s 
disease. 
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